Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.117
Filtrar
1.
Fungal Biol ; 128(2): 1643-1656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575237

RESUMO

Microsclerotia (MS) are considered one of the most promising propagules for use as active ingredients in biopesticides due to their tolerance to abiotic factors and ability to produce infective conidia for the control of pests. Therefore, the objective of this research was to establish the conditions required to induce the formation of microsclerotia in Metarhizium robertsii Mt004 and to study its development process, tolerance to abiotic factors and insecticidal activity of MS-derived conidia. M. robertsii started to form hyphal aggregates after 2 days and looked more compact after 8 days. MS were mature and pigmented after 20 days. The final yield was 2.0 × 103 MS/mL and MS size varied between 356.9 and 1348.4 µm. Ultrastructure analysis revealed that mature MS contained only a few live cells embedded in an extracellular matrix. Mature MS were more tolerance to UV-B radiation, heat and storage trials than conidia from Solid State Fermentation. MS-derived conidia were as virulent as conidia against Diatraea saccharalis larvae. These results showed that MS are promising propagules for the development of more persistent and efficient biopesticides for harsh environmental conditions. Our findings provide a baseline for production and a better understanding of microsclerotia development in M. robertsii strains.


Assuntos
Inseticidas , Metarhizium , Inseticidas/farmacologia , Agentes de Controle Biológico , Meios de Cultura/química , Esporos Fúngicos , Controle Biológico de Vetores/métodos
2.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594617

RESUMO

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Assuntos
Bacillus thuringiensis , Mariposas , Praguicidas , Animais , Larva/genética , Larva/metabolismo , Soja/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores/métodos , Mariposas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromossomos/metabolismo , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas/genética
3.
Sci Rep ; 14(1): 9299, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653843

RESUMO

Phthorimaea absoluta is a global constraint to tomato production and can cause up to 100% yield loss. Farmers heavily rely on synthetic pesticides to manage this pest. However, these pesticides are detrimental to human, animal, and environmental health. Therefore, exploring eco-friendly, sustainable Integrated Pest Management approaches, including biopesticides as potential alternatives, is of paramount importance. In this context, the present study (i) evaluated the efficacy of 10 Bacillus thuringiensis isolates, neem, garlic, and fenugreek; (ii) assessed the interactions between the most potent plant extracts and B. thuringiensis isolates, and (iii) evaluated the gut microbial diversity due to the treatments for the development of novel formulations against P. absoluta. Neem recorded the highest mortality of 93.79 ± 3.12% with an LT50 value of 1.21 ± 0.24 days, Bt HD263 induced 91.3 ± 3.68% mortality with LT50 of 2.63 ± 0.11 days, compared to both Bt 43 and fenugreek that caused < 50% mortality. Larval mortality was further enhanced to 99 ± 1.04% when Bt HD263 and neem were combined. Furthermore, the microbiome analyses showed that Klebsiella, Escherichia and Enterobacter had the highest abundance in all treatments with Klebsiella being the most abundant. In addition, a shift in the abundance of the bacterial genera due to the treatments was observed. Our findings showed that neem, garlic, and Bt HD263 could effectively control P. absoluta and be integrated into IPM programs after validation by field efficacy trials.


Assuntos
Bacillus thuringiensis , Extratos Vegetais , Trigonella , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Trigonella/química , Controle Biológico de Vetores/métodos , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Larva/efeitos dos fármacos , Larva/microbiologia , Alho/química , Microbioma Gastrointestinal/efeitos dos fármacos , Solanum lycopersicum/microbiologia
4.
BMC Genomics ; 25(1): 311, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532315

RESUMO

BACKGROUND: The Argentine stem weevil (ASW, Listronotus bonariensis) is a significant pasture pest in Aotearoa New Zealand, primarily controlled by the parasitoid biocontrol agent Microctonus hyperodae. Despite providing effective control of ASW soon after release, M. hyperodae parasitism rates have since declined significantly, with ASW hypothesised to have evolved resistance to its biocontrol agent. While the parasitism arsenal of M. hyperodae has previously been investigated, revealing many venom components and an exogenous novel DNA virus Microctonus hyperodae filamentous virus (MhFV), the effects of said arsenal on gene expression in ASW during parasitism have not been examined. In this study, we performed a multi-species transcriptomic analysis to investigate the biology of ASW parasitism by M. hyperodae, as well as the decline in efficacy of this biocontrol system. RESULTS: The transcriptomic response of ASW to parasitism by M. hyperodae involves modulation of the weevil's innate immune system, flight muscle components, and lipid and glucose metabolism. The multispecies approach also revealed continued expression of venom components in parasitised ASW, as well as the transmission of MhFV to weevils during parasitism and some interrupted parasitism attempts. Transcriptomics did not detect a clear indication of parasitoid avoidance or other mechanisms to explain biocontrol decline. CONCLUSIONS: This study has expanded our understanding of interactions between M. hyperodae and ASW in a biocontrol system of critical importance to Aotearoa-New Zealand's agricultural economy. Transmission of MhFV to ASW during successful and interrupted parasitism attempts may link to a premature mortality phenomenon in ASW, hypothesised to be a result of a toxin-antitoxin system. Further research into MhFV and its potential role in ASW premature mortality is required to explore whether manipulation of this viral infection has the potential to increase biocontrol efficacy in future.


Assuntos
Himenópteros , Vespas , Gorgulhos , Animais , Controle Biológico de Vetores , Insetos/genética , Himenópteros/genética , Gorgulhos/genética , Perfilação da Expressão Gênica , Vespas/genética , Interações Hospedeiro-Parasita
5.
PLoS One ; 19(3): e0298165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512937

RESUMO

Inundative biological control (biocontrol) efforts in pest management lead to the mass distribution of commercialized biocontrol agents. Many 'biocontrol gone awry' incidents have resulted in disastrous biodiversity impacts, leading to increased scrutiny of biocontrol efforts. The nematode Phasmarhabditis hermaphrodita is sold as a biocontrol agent on three continents and targets pest gastropods such as Deroceras reticulatum, the Grey Field Slug; P. hermaphrodita is not presently approved for use in the United States. Investigations into the potential for P. hermaphrodita to infect non-target gastropod species of conservation relevance, however, are limited. We examined the effects of three strains of P. hermaphrodita on mortality in Monadenia fidelis, the Pacific Sideband, a snail species endemic to the Pacific Northwest of North America, in laboratory conditions. Across a 71-day laboratory infectivity assay, snails exposed to each of the three nematode strains, each analyzed at two doses, experienced a mean 50% mortality by days 20-42. All nematode-treated snails were dead by the end of the study. By contrast, 30/30 water-control snails experienced no mortality. Nematodes killed smaller, juvenile-stage snails significantly faster than those in larger and more developmentally advanced hosts. Our results provide direct evidence that the biocontrol nematode P. hermaphrodita infects and kills M. fidelis, a non-target gastropod species endemic to the Pacific Northwest, in laboratory conditions. This study suggests that introduction of P. hermaphrodita to new ecosystems might negatively impact endemic gastropod biodiversity and advocates for further investigation of non-target effects, including in conditions closer to the natural environments of non-target species.


Assuntos
Gastrópodes , Nematoides , Rhabditoidea , Animais , Ecossistema , Controle Biológico de Vetores/métodos , Caramujos , América do Norte , Noroeste dos Estados Unidos , Biodiversidade
6.
Math Biosci Eng ; 21(2): 3063-3094, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38454719

RESUMO

The occurrence of pests and diseases during agricultural production affects the quality and quantity of agricultural products. It is important to evaluate the impact of various factors on pests to achieve optimal results of integrated pest management (IPM) during its implementation. In this paper, we considered the transient and non-transient effects of chemical control on pests and the effects on natural enemies at different times, and developed a corresponding pest control model. Detailed studies and comparisons were conducted for spraying pesticides either more or less frequently as compared to strategies for releasing natural enemies. The threshold conditions for global asymptotic stabilization of the pest extinction period solution was obtained. Using two-parameter and sensitivity analysis techniques, the parameters affecting the variation of the threshold were discussed. By comparing these two pest control strategies, we found the existence of optimal application and release frequencies. Finally, in order to control pests below the economic threshold level, the state-dependent pest model was numerically investigated. The results show that the presence or absence of chemical control of pests can depend on the values taken for the parameters in the model. Based on this information, pest control experts can make decisions about the best spraying time and the best release rate.


Assuntos
Controle Biológico de Vetores , Praguicidas , Controle Biológico de Vetores/métodos , Praguicidas/farmacologia , Agricultura/métodos
7.
Proc Natl Acad Sci U S A ; 121(13): e2319838121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513093

RESUMO

The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.


Assuntos
Bacillus thuringiensis , Endotoxinas , Animais , Larva/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Polinização , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Controle Biológico de Vetores/métodos , Resistência a Inseticidas/genética , Genômica , Sementes/metabolismo , Zea mays/genética
8.
Chemosphere ; 355: 141784, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537714

RESUMO

The improper use of synthetic pesticides has caused adverse effects on global ecosystems and human health. As a part of sustainable pest management strategy, natural predators, along with nano-pesticides, have made significant contributions to ecological agriculture. The cooperative application of both approaches may overcome their limitations, substantially reducing pesticide application while controlling insect pests efficiently. Herein, the current study introduced a cationic star polymer (SPc) to prepare two types of nano-pesticides, which were co-applied with predatory stinkbugs Picromerus lewisi to achieve perfect cooperative pest control. The SPc exhibited nearly no toxicity against predatory stinkbugs at the working concentration, but it led to the death of predatory stinkbugs at extremely high concentration with the lethal concentration 50 (LC50) value of 13.57 mg/mL through oral feeding method. RNA-seq analysis revealed that the oral feeding of SPc could induce obvious stress responses, leading to stronger phagocytosis, exocytosis, and energy synthesis to ultimately result in the death of predatory stinkbugs. Then, the broflanilide and chlorobenzuron were employed to prepare the self-assembled nano-pesticides via hydrogen bond and Van der Waals force, and the complexation with SPc broke the self-aggregated structures of pesticides and reduced their particle sizes down to nanoscale. The bioactivities of prepared nano-pesticides were significantly improved toward common cutworm Spodoptera litura with the corrected mortality increase by approximately 30%. Importantly, predatory stinkbugs exhibited a strong predation selectivity for alive common cutworms to reduce the exposure risk of nano-pesticides, and the nano-pesticides showed negligible toxicity against predators. Thus, the nano-pesticides and predatory stinkbugs could be applied simultaneously for efficient and sustainable pest management. The current study provides an excellent precedent for perfect cooperative pest control via nano-pesticide and natural predator.


Assuntos
Praguicidas , Animais , Humanos , Praguicidas/toxicidade , Ecossistema , Comportamento Predatório , Controle Biológico de Vetores/métodos , Agricultura/métodos , Controle de Pragas
9.
Exp Appl Acarol ; 92(3): 385-401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478140

RESUMO

Spider mites Tetranychus urticae, Tetranychus macfarlanei and Oligonychus biharensis are considered to be highly polyphagous in nature and causes severe damage to a wide range of plants around the world. Amblyseius paraaerialis is an efficient phytoseiid predator of spider mites with a potential to survive on both natural and alternative diets. Evaluation of predatory potential and prey stage preference provides valuable information on the efficacy of the predatory species in controlling mite population. Feeding experiments were conducted on mulberry leaf discs under the laboratory conditions of 30 ± 2 °C and 70 ± 5% relative humidity (RH). After 24 h of feeding experiment, the adult female predator exhibited a significant preference in feeding towards the eggs of T. macfarlanei (42.6%) and the larval stages of T. urticae (46%) and O. biharensis (25.3%). The mass rearing possibilities of A. paraaerialis was tested by tracking and comparing the developmental duration of individual life stages on varied food sources like, honey, castor (Ricinus communis) pollen, honey-pollen mixture and mixed life stages of T. urticae. The predator was failed to complete its development on honey and pollen when supplied separately. However it was successfully developed on honey-pollen mixture and mixed life stages of T. urticae. The developmental studies unravelled a shortest developmental duration and an extended adult longevity and lifespan of A. paraaerialis when reared on the alternative diet, thus opened up the mass rearing possibility of the predatory species under laboratory conditions.


Assuntos
Dieta , Ácaros , Controle Biológico de Vetores , Comportamento Predatório , Tetranychidae , Animais , Tetranychidae/fisiologia , Feminino , Ácaros/fisiologia , Ácaros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Óvulo/fisiologia , Óvulo/crescimento & desenvolvimento , Cadeia Alimentar
10.
J Parasitol ; 110(2): 106-113, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503316

RESUMO

The acaricidal effect of 14 strains of Metarhizium anisopliae sensu lato isolated from soil of livestock farms in the Mexican tropics was evaluated against larvae and engorged females, and during the laying and hatching of eggs of Rhipicephalus microplus (Ixodida: Ixodidae). For each fungal strain, the larvae mortality percentage was evaluated through a larval immersion test, while the reproductive efficiency indices in engorged females were measured using adult immersion tests at a dose of 1 × 108 conidia/ml. All strains of M. anisopliae (s.l.) proved to be highly effective against R. microplus larvae (66-100%) and engorged females (100%). The strains also showed a good effect in inhibiting egg laying (16.45-56.38%) and a moderate effect in decreasing egg hatching (5.24-32.68%). Two strains demonstrated to be effective against all development phases of R. microplus in an integrated manner.


Assuntos
Metarhizium , Rhipicephalus , Animais , Feminino , Rhipicephalus/microbiologia , Gado , Larva/microbiologia , Controle Biológico de Vetores , Reprodução
11.
Methods Mol Biol ; 2756: 351-382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427305

RESUMO

The growing interest in the use of entomopathogenic nematodes and their symbiotic bacteria as promising biocontrol agents of many arthropod pests and pathogens has created running technologies to expand their use globally. The related laboratory procedures and tests on these nematodes such as their isolation, count, culture, identification, pathogenicity, virulence, and environmental tolerance should form the solid basis for such an expansion with reliable uses. Extensive practical details of such procedures and tests as well as how to identify and overcome the problems associated with these aspects are addressed in this chapter.


Assuntos
Artrópodes , Nematoides , Animais , Controle Biológico de Vetores/métodos , Reprodução , Simbiose
12.
PLoS One ; 19(3): e0283916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457456

RESUMO

Functional response describes the number of hosts attacked by a parasitoid in relation to host densities and plays an important role by connecting behavioral-level processes with community-level processes. Most functional response studies were carried out using simple experimental designs where the insects were confined to a plain and small arena with different host densities during a fixed period of time. With these designs, other factors that might affect the functional response of parasitoids were not analyzed, such as fecundity, age, and experience. We proposed a series of latent-variables Markovian models that comprised an integrated approach of functional response and egg production models to estimate the realized lifetime reproductive success of parasitoids. As a case study, we used the parasitoids Anagyrus cachamai and A. lapachosus (Hymenoptera: Encyrtidae), two candidate agents for neoclassical biocontrol of the Puerto Rican cactus pest mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). The tested species were assessed according to their physiology and prior experience. We estimated the number of mature eggs after emergence, egg production on the first day, egg production rate, the proportion of eggs resorbed, egg resorption threshold, and egg storage capacity. Anagyrus cachamai and A. lapachosus both presented a type III functional response. However, the two parasitoids behaved differently; for A. cachamai, the number of parasitized hosts decreased with female age and depended on the number of mature eggs that were available for oviposition, whereas A. lapachosus host parasitism increased with female age and was modulated by its daily egg load and previous experience. The methodology presented may have large applicability in pest control, invasive species management, and conservation biology, as it has the potential to increase our understanding of the reproductive biology of a wide variety of species, ultimately leading to improved management strategies.


Assuntos
Cactaceae , Hemípteros , Himenópteros , Vespas , Feminino , Animais , Himenópteros/fisiologia , Oviposição , Hemípteros/fisiologia , Controle Biológico de Vetores , Óvulo , Vespas/fisiologia , Interações Hospedeiro-Parasita
13.
PLoS One ; 19(3): e0299483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457466

RESUMO

In Nebraska USA, many populations of western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, now exhibit some level of resistance to all corn rootworm-active Bacillus thuringiensis Berliner (Bt) proteins expressed in commercial hybrids. Therefore, a study was conducted in northeast Nebraska from 2020-2022 to reevaluate current corn rootworm management options in continuous maize (consecutive planting for ≥2 years). Results from on-farm experiments to evaluate a standard soil-applied insecticide (Aztec® 4.67G) in combination with non-rootworm Bt or rootworm-active Bt pyramided maize (Cry3Bb1 + Gpp34Ab1/Tpp35Ab1) are reported within the context of WCR Bt resistance levels present. Corrected survival from Bt pyramid single-plant bioassays (<0.3, 0.3-0.49, >0.5) was used to place populations into 3 resistance categories. Variables evaluated included root injury, adult emergence, proportion lodged maize, and grain yield. Key results: A composite analysis of all populations across resistance levels indicated that addition of soil insecticide to Bt pyramid significantly reduced adult emergence and lodging but did not significantly increase root protection or yield. Within and among resistance category analyses of root injury revealed that the Bt pyramid remained highly efficacious at any non-rootworm Bt root injury level when resistance was absent or low. When corrected survival was >0.3, mean Bt pyramid root injury tracked more closely in a positive linear fashion with mean non-rootworm Bt root injury (rootworm density x level of resistance interaction). Similar trends were obtained for adult emergence but not yield. Mean Bt pyramid root injury rating was <0.75 in most populations with Bt resistance, which contributed to no significant yield differences among categories. Results are discussed within the context of IPM:IRM tradeoffs and the need to reduce WCR densities in this system to decrease the impact of the density x resistance interaction to bridge use of current pyramids with new technologies introduced over the next decade.


Assuntos
Bacillus thuringiensis , Besouros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Besouros/genética , Zea mays/genética , Zea mays/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores , Solo , Larva/metabolismo
14.
J Sci Food Agric ; 104(7): 4383-4390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323469

RESUMO

BACKGROUND: A variety of environmental factors can disrupt biotic interactions between plants, insects and soil microorganisms with consequences for agricultural management and production. Many of these belowground interactions are mediated by volatile organic compounds (VOCs) which can be used for communication under appropriate environmental conditions. Behavioral responses to these compounds may likewise be dependent on varying soil conditions which are influenced by a changing climate. To determine how changing environmental conditions may affect VOC-mediated biotic interactions, we used a belowground system where entomopathogenic nematodes (EPNs) - tiny roundworm parasitoids of soil-borne insects - respond to VOCs by moving through the soil pore matrix. Specifically, we used two genera of EPNs - Heterorhabditis and Steinernema - that are known to respond to four specific terpenes - α-pinene, linalool, d-limonene and pregeijerene - released by the roots of plants in the presence of herbivores. We assessed the response of these nematodes to these terpenes under three moisture regimes to determine whether drier conditions or inundated conditions may influence the response behavior of these nematodes. RESULTS: Our results illustrate that the recovery rate of EPNs is positively associated with soil moisture concentration. As soil moisture concentration increases from 6% to 18%, substantially more nematodes are recovered from bioassays. In addition, we find that soil moisture influences EPN preference for VOCs, as illustrated in the variable response rates. Certain compounds shifted from acting as a repellent to acting as an attractant and vice versa depending on the soil moisture concentration. CONCLUSION: On a broad scale, we demonstrate that soil moisture has a significant effect on EPN host-seeking behavior. EPN efficacy as biological control agents could be affected by climate change projections that predict varying soil moisture concentrations. We recommend that maintaining nematodes as biological control agents is essential for sustainable agriculture development, as they significantly contribute not only to soil health but also to efficient pest management. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Nematoides , Solo , Animais , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos , Nematoides/fisiologia , Insetos , Terpenos
15.
Arch Insect Biochem Physiol ; 115(2): e22092, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409851

RESUMO

Spodoptera frugiperda is a migratory agricultural pest with fast-spreading speed, long migration distance, and wide host range, which seriously threatens the safety of economic crops. To predict the trends of S. frugiperda and its parasitoid wasp Trichogramma pretiosum in their habitats under current and future climatic conditions, based on MaxEnt model and geographic distribution data of their historical occurrence, we project the feasibility of introducing T. pretiosum to control S. frugiperda by evaluating on their potential global distribution. The results show that, under the current greenhouse gas concentration, the potential distribution area of S. frugiperda is concentrated in 50° N-30° S, with a total area of 1.74 × 106 km2 , and the potential distribution area of T. pretiosum in the whole world is 2.91 × 106 km2 . The suitable areas of T. pretiosum cover almost all the suitable areas of S. frugiperda, which indicates that T. pretiosum can be introduced to control S. frugiperda. The results of this study can provide a theoretical basis for the monitoring and early warning of S. frugiperda and the use of T. pretiosum to control S. frugiperda.


Assuntos
Mariposas , Vespas , Animais , Spodoptera , Controle Biológico de Vetores/métodos , Mariposas/parasitologia , Produtos Agrícolas
16.
Toxins (Basel) ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393170

RESUMO

Paralipsa gularis (Zeller) is a storage pest; however, in recent years it has evolved into a considerable maize pest during the late growth stage in the border region between China and other Southeast Asian countries. Bt transgenic insect-resistant maize is an effective measure in controlling a wide range of lepidopteran pests, but there is a lack of research on the toxic effects of storage pests. We tested the toxicity of Bt-Cry1Ab, Vip3Aa, and their complex proteins against P. gularis via bioassay and investigated the efficiency of Bt-(Cry1Ab+Vip3Aa) maize in controlling P. gularis during the late growth stage of maize in the period 2022-2023. The bioassay results show that the susceptibilities of P. gularis to the two Bt proteins and their complex proteins were significantly different. The LC50 values of DBNCry1Ab ("DBN9936" event), DBNVip3Aa ("DBN9501" event), DBN Cry1Ab+Vip3Aa ("DBN3601T" event), and Syngenta Cry1Ab+Vip3Aa ("Bt11" event × "MIR162" event) were 0.038 µg/g, 0.114 µg/g, 0.110 µg/g, and 0.147 µg/g, and the GIC50 values were 0.014 µg/g, 0.073 µg/g, 0.027 µg/g, and 0.026 µg/g, respectively. Determination of the expression content of the insecticidal protein in different tissues of Bt-(Cry1Ab+Vip3Aa) maize shows that the total Bt protein content in different tissues was in the following order: stalk > bract > cob > kernel. However, the bioassay results show that the mortalities of P. gularis feeding on Bt-(Cry1Ab+Vip3Aa) maize in different tissues at different growth stages were all above 93.00%. The field trial indicates that the occurrence density of larvae and plant damage rate for conventional maize were 422.10 individuals/100 plants and 94.40%, respectively, whereas no larvae were found on Bt-(Cry1Ab+Vip3Aa) maize. In summary, this study implies that Bt-(Cry1Ab+Vip3Aa) maize has a high potential for control of P. gularis, providing a new technical measure for the management of the pest.


Assuntos
Bacillus thuringiensis , Lepidópteros , Humanos , Animais , Zea mays/genética , Zea mays/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/genética , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/genética , Controle Biológico de Vetores/métodos , Lepidópteros/metabolismo , Larva
17.
Neotrop Entomol ; 53(2): 391-399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347318

RESUMO

The peanut thrips, Enneothrips enigmaticus (Thysanoptera: Thrypidae), is an important pest of the peanut (Arachis hypogaea) in South America. Due to concerns about the environment and human health induced by the extensive use of pesticides in the management control of pests, environmentally and friendlier tactics must be targeted. Thus, this study investigates, for the first time, the behavior of Xylocoris sordidus (Hemiptera: Anthocoridae) as a biological control agent for E. enigmaticus. The methodology included no-choice tests to assess whether the predation rate varies according to the developmental stage of the prey, as well as the predator's developmental stage with the highest predation capacity. Additionally, an analysis of the functional response of adult and 5th instar nymphs of X. sordidus exposed to different densities of E. enigmaticus nymphs (1, 2, 4, 8, 16, and 32) was conducted. The results confirm the predation of peanut thrips by X. sordidus, with a higher predation rate in the nymphal stages of the prey. There was no difference in predation capacity between predator nymphs and adults, and exhibiting a type II functional response. Therefore, the potential of X. sordidus as a biological control agent for E. enigmaticus is confirmed, showing the importance of adopting measures to preserve this predator in peanut crops.


Assuntos
Hemípteros , Heterópteros , Tisanópteros , Humanos , Animais , Agentes de Controle Biológico , Heterópteros/fisiologia , Comportamento Predatório , Ninfa/fisiologia , Arachis , Controle Biológico de Vetores
18.
Ecotoxicol Environ Saf ; 273: 116153, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422790

RESUMO

Microplastics have emerged as significant and concerning pollutants within soil ecosystems. Among the soil biota, entomopathogenic nematodes (EPNs) are lethal parasites of arthropods, and are considered among the most effective biological agents against pests. Infective juveniles (IJs) of EPNs, as they navigate the soil matrix scavenging for arthropod hosts to infect, they could potentially encounter microplastics. Howver, the impact of microplastics on EPNs has not been fully elucidated yet. We addressed this gap by subjecting Steinernema feltiae EPNs to polystyrene microplastics (PS-MPs) with various sizes, concentrations, and exposure durations. After confirming PS-MP ingestion by S. feltiae using fluorescent dyes, we found that the PS-MPs reduced the survival, reproduction, and pathogenicity of the tested EPNs, with effects intensifying for smaller PS-MPs (0.1-1 µm) at higher concentrations (105 µg/L). Furthermore, exposure to PS-MPs triggered oxidative stress in S. feltiae, leading to increased reactive oxygen species levels, compromised mitochondrial membrane potential, and increased antioxidative enzyme activity. Furthermore, transcriptome analyses revealed PS-MP-induced suppression of mitochondrial function and oxidative phosphorylation pathways. In conclusion, we show that ingestion of PS-MPs by EPNs can compromise their fitness, due to multple toxicity effects. Our results bear far-reaching consequences, as the presence of microplastics in soil ecosystems could undermine the ecological role of EPNs in regulating pest populations.


Assuntos
Artrópodes , Rabditídios , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Virulência , Ecossistema , Controle Biológico de Vetores , Rabditídios/fisiologia , Poliestirenos/toxicidade , Estresse Oxidativo , Reprodução , Antioxidantes , Solo
19.
J Invertebr Pathol ; 203: 108070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311231

RESUMO

Consistent efficacy is required for entomopathogenic nematodes to gain wider adoption as biocontrol agents. Recently, we demonstrated that when exposed to nematode pheromone blends, entomopathogenic nematodes showed increased dispersal, infectivity, and efficacy under laboratory and greenhouse conditions. Prior to this study, the impact of entomopathogenic nematode-pheromone combinations on field efficacy had yet to be studied. Steinernema feltiae is a commercially available entomopathogenic nematode that has been shown to increase mortality in insect pests such as the pecan weevil Curculio caryae. In this study, the pecan weevil was used as a model system to evaluate changes in S. feltiae efficacy when treated with a partially purified ascaroside pheromone blend. Following exposure to the pheromone blend, the efficacy of S. feltiae significantly increased as measured with decreased C. caryae survival despite unfavorable environmental conditions. The results of this study highlight a potential new avenue for using entomopathogenic nematodes in field conditions. With increased efficacy, using entomopathogenic nematodes will reduce reliance on conventional management methods in pecan production, translating into more environmentally acceptable practices.


Assuntos
Carya , Rabditídios , Gorgulhos , Animais , Feromônios/farmacologia , Controle Biológico de Vetores/métodos
20.
BMC Biotechnol ; 24(1): 7, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302991

RESUMO

BACKGROUND: The Mediterranean fruit fly, Ceratitis capitata, is a significant agricultural pest managed through area-wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only releases increase the efficiency and cost-effectiveness of SIT programs, which can be achieved through the development of genetic sexing strains (GSS). The most successful GSS developed to date is the C. capitata VIENNA 8 GSS, constructed using classical genetic approaches and an irradiation-induced translocation with two selectable markers: the white pupae (wp) and temperature-sensitive lethal (tsl) genes. However, currently used methods for selecting suitable markers and inducing translocations are stochastic and non-specific, resulting in a laborious and time-consuming process. Recent efforts have focused on identifying the gene(s) and the causal mutation(s) for suitable phenotypes, such as wp and tsl, which could be used as selectable markers for developing a generic approach for constructing GSS. The wp gene was recently identified, and efforts have been initiated to identify the tsl gene. This study investigates Ceratitis capitata deep orange (Ccdor) as a tsl candidate gene and its potential to induce tsl phenotypes. RESULTS: An integrated approach based on cytogenetics, genomics, bioinformatics, and gene editing was used to characterize the Ccdor. Its location was confirmed on the right arm of chromosome 5 in the putative tsl genomic region. Knock-out of Ccdor using CRISPR/Cas9-NHEJ and targeting the fourth exon resulted in lethality at mid- and late-pupal stage, while the successful application of CRISPR HDR introducing a point mutation on the sixth exon resulted in the establishment of the desired strain and two additional strains (dor 12del and dor 51dup), all of them expressing tsl phenotypes and presenting no (or minimal) fitness cost when reared at 25 °C. One of the strains exhibited complete lethality when embryos were exposed at 36 °C. CONCLUSIONS: Gene editing of the deep orange gene in Ceratitis capitata resulted in the establishment of temperature-sensitive lethal mutant strains. The induced mutations did not significantly affect the rearing efficiency of the strains. As deep orange is a highly conserved gene, these data suggest that it can be considered a target for the development of tsl mutations which could potentially be used to develop novel genetic sexing strains in insect pests and disease vectors.


Assuntos
Ceratitis capitata , Animais , Masculino , Ceratitis capitata/genética , Edição de Genes , Temperatura , Mutação , Fenótipo , Controle Biológico de Vetores/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...